Finite elements on evolving surfaces

نویسندگان

  • G. DZIUK
  • C. M. ELLIOTT
چکیده

In this article, we define a new evolving surface finite-element method for numerically approximating partial differential equations on hypersurfaces Γ (t) in Rn+1 which evolve with time. The key idea is based on approximating Γ (t) by an evolving interpolated polyhedral (polygonal if n = 1) surface Γh(t) consisting of a union of simplices (triangles for n = 2) whose vertices lie on Γ (t). A finite-element space of functions is then defined by taking the set of all continuous functions on Γh(t) which are linear affine on each simplex. The finite-element nodal basis functions enjoy a transport property which simplifies the computation. We formulate a conservation law for a scalar quantity on Γ (t) and, in the case of a diffusive flux, derive a transport and diffusion equation which takes into account the tangential velocity and the local stretching of the surface. Using surface gradients to define weak forms of elliptic operators naturally generates weak formulations of elliptic and parabolic equations on Γ (t). Our finite-element method is applied to the weak form of the conservation equation. The computations of the mass and element stiffness matrices are simple and straightforward. Error bounds are derived in the case of semi-discretization in space. Numerical experiments are described which indicate the order of convergence and also the power of the method. We describe how this framework may be employed in applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L2-estimates for the evolving surface finite element method

In this paper we consider the evolving surface finite element method for the advection and diffusion of a conserved scalar quantity on a moving surface. In an earlier paper using a suitable variational formulation in time dependent Sobolev space we proposed and analysed a finite element method using surface finite elements on evolving triangulated surfaces. An optimal order H1-error bound was p...

متن کامل

A Space-time Fem for Pdes on Evolving Surfaces

The paper studies a finite element method for computing transport and diffusion along evolving surfaces. The method does not require a parametrization of a surface or an extension of a PDE from a surface into a bulk outer domain. The surface and its evolution may be given implicitly, e.g., as the solution of a level set equation. This approach naturally allows a surface to undergo topological c...

متن کامل

Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces

In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations (PDEs) posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time–continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface fi...

متن کامل

An ALE ESFEM for solving PDEs on evolving surfaces

Numerical methods for approximating the solution of partial differential equations on evolving hypersurfaces using surface finite elements on evolving triangulated surfaces are presented. In the ALE ESFEM the vertices of the triangles evolve with a velocity which is normal to the hypersurface whilst having a tangential velocity which is arbitrary. This is in contrast to the original evolving su...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time – continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite ...

متن کامل

Backward difference time discretization of parabolic differential equations on evolving surfaces

A linear parabolic differential equation on a moving surface is discretized in space by evolving surface finite elements and in time by backward difference formulas (BDF). Using results from Dahlquist’s G-stability theory and Nevanlinna & Odeh’s multiplier technique together with properties of the spatial semi-discretization, stability of the full discretization is proven for the BDF methods up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005